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Multivariate data description: PCA



One dimensional data

One dimension (x) and three values are sufficient for  
data description

Three samples, A, B, and C, could differ just for the extent of one  
variable (C > B >A)

Example:

A B C

Sugar content
x



One dimensional data matrix

A one per three matrix is required to describe the dataset:  

each sample is identified by one values (x) or score

the variable (x) has three cases (A, B, C) corresponding to  

samples

Sugar content

A xA

B xB

C xC



Two dimensions (x, y) are required for data description;  

Each sample is identified by two values (x and y)

y Three samples, A, B, and C, could differ for twovariables
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Two dimensional data matrix
A two per three matrix is required to describe the dataset:  

each sample is identified by two values (x, y) or scores

each variable has three cases (A, B, C) corresponding to  

samples

Sugar content Acidity

A xA yB

B xB yB

C xC yC



Three samples, A, B, and C, could differ for three variables

Three dimensions (x, y, z) are required for data description;  
each sample is identified by three values (x, y, z)
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Three dimensional data matrix

A three per three matrix is required to describe thedata  
set:

each sample is identified by three values (x, y, z) or scores

each variable has three cases (A, B, C) corresponding to  

samples

Sugar content (x) Acidity (y) Salt content (z)

A xA yA zA

B xB yB zB

C xC yC zC
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In a tridimensional  

cartesian space each  

sample is identified by  

three points with x, y, z  

coordinates (scores).
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or extent of a variable  

and is perpendicular to  

the plane defined by the  
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Description of multidimensional data (1)

l What if we have a lot of variables that  

describes our samples?

l In such a case a multidimensional (n  

dimensional) space is needed to  

describe the data distribution.

l In such a case a n dimensional matrix  

is needed to describe the data set.



Principal component analysis (PCA)

l PCA is a statistical descriptive analysis that

enable the analyst to describe a system by using

new variables (latent variables) which are a

linear transformation of the original variables

and are not correlated among them.

l PCA could be used to reduce the dimensionality

of a system at n (n > 3) dimensions by operating

the othogonal projection of vectors and scores

on a 2D plane or in a 3D space.



Letôs return to our original A, B and C samples and  

imagine them as a part of a big data set.
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Latent variables in data structure

The maximum variance of the data set represented in the  
3D graph is along the direction indicated by the yellow line.



Explained variance maximization (1)

l Each parameter (variable) of a data set could be
described by a media and a variance value,
which synthesize the information on the
distribution of data values.

l Three variables representing three parameters
could be described by three media and three
variance value, which synthesize the information
on the distribution of the data values.

l The maximum variance of multidimensional data  
could not be along the original variables.
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The vector that describes the yellow line is a new

variable (factorial variable) that is called PC1 or

first principal component.
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PCA representation

The PC1 brings always along with it the maximum  

explained variance.



Explained variance maximization
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The vector perpendicular to PC1 is a new

variable (factorial variable) that is called PC2 or

second principal component.

z

The PC2 (orange line) brings along with it the  

maximum variance not explained by PC1.



Principal components

PC1 and PC2 could not explain the  

same part of variance since they  

are orthogonal among them by  

definition, thus they are not  

correlated among them.

PC1 and PC2 form a 2D plane.

PC1 and PC2 could preceed a  

PC3 (pink line) orthogonal to both  

of them.

PC1, PC2 and PC3 form a 3D  
space. PC1
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Large data set in our mind

l How could we manage large data set in  

our mind?

l We ósummarizeô theinformation

l We keep the most pertinent information



Most pertinent information?

l If there is no variance along a variable, it

means that our data could not differ

among them for that variable.

l If there is a lot of variance along a

variable there is more probability that our

data could differ among them for that

variable.

l In this case variance could be used as a  

criterion forópertinenceô.



Dimensionality reduction (PCA)

l PCA could be also used to reduce the

dimensionality of a system at n (n > 3)
dimensions by operating the othogonal

projection of vectors and scores on a 2D plane

or in a 3D space.

l The first 2 or 3 PCs will bring along with them  

the maximum explained variance for definition.

l In this case PCA is useful to describe a data set  

since it ósummarizesô the information.



Figurative exemplification

T h e r e d u c t i o n o f
dimensionality of a 10D
space to a 2D space
could be seen as a cut
of the solid space with a
2 D p l a n e t h a t
intersecates the solid by
passing trough t h e
o r i g i n o f a x e s
(geometrical centre of
solid).



How PCA operates to reduce dimensionality?

Infinite planes could pass
through  
the
(geometrical  
solid).

central point
centre of the

How does PCA choose the
inclination (slope) of the
cutting plane?

PCA choose t h e slope that  
allows t o maximize
t h e variance
from the enxepwlained  
bidimensional space.



In statistical terms

Principal c o m p o n e n t analysis (

P C A ) is a statistical procedure that

uses an orthogonal transformation t o

convert a set of observations o f

possibly correlated variables into a set of  

values o f linearly uncorrelated  

variables called óprincipalcomponentsô.
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Multivariate data

Å The multivariate value is a vector

Å The multivariate data are shown as a matrix

Å Example :

ï A population of 20 peaches having measured 5 variables:

ï Total acidity, anthocyanin, brix, carotene e chlorophyll

Acidity anthocyanin Brix Carotene chlorophyll
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Multivariate average

Å The average multivariate data is a vector made by the average of the  
single variable (the column).

1.2874 0.0084 11.4516 0.8867 3.0586
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Correlation graph
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Principal components analysis (PCA)

Analysis of Variance

PCA and diagonalization of the covariance matrix

Scores and loadings



18

Multivariate statistics

Å the descriptors for Univariate distribution :

Å The normal distribution defined in univariate approach has the  
same importance in multivariate approach

scalarÝ vector

scalarÝmatrix (covariance matrix)

ï Average

ï Variance

ï é.



PCAprocedure

Å Principal component analysis (PCA) is a statistical  
procedure that uses an orthogonal  
transformation to convert a set of observations of  
possibly correlated variables into a set of values  
of linearly uncorrelated variables called principal  
components. The number of principal  
components is less than or equal to the number  
of original variables. This transformation is  
defined in such a way that the first principal  
component has the largest possible variance  
(that is, accounts for as much of the variability in  
the data as possible), and each succeeding  
component in turn has the highest variance  
possible under the constraint that it is orthogonal  
to the preceding components. The resulting  
vectors are an uncorrelated orthogonal basis set.  
PCA is sensitive to the relative scaling of the  
original variables.
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PCA
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PCA: scores e loadings

Å The new coordinates of the vectors corresponding to the observations (the rows  
of the matrix x) in the base of the principal components are called scores

Å The coefficients of the linear combinations that define the principal components  
are called loadings

Å The loading therefore provides a measure of the contribution of each observable  

to the principal components

Å The loadings are also represented as scores as they are the projection of the
original axes in the subspace identified the principal components, and scores
and loadings can be plotted together
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Exercise 1: Fruits parameters

Å Suppose we have measured the following quantities in peaches: pH, sucrose, glucose,  
fructose, malic acid and citric acid, and we want to study the classification and the  
relationship using these parameters. Flie has been provided as EDCFmatrix.xlsx

pH sucrose glucose fructose malic acid citric acid

babygold 4.10 8.80 0.80 1.20 0.60 0.20

grezzano 4.0 7.0 0.60 0.80 0.50 0.10

iris rosso 3.50 4.30 0.90 1.0 0.40 0.60

maria aurelia 4.10 7.30 0.80 1.10 0.40 0.60

snowqueen 3.90 5.70 0.80 1.30 0.50 0.50

spring star 3.60 9.40 1.40 1.90 1.0 0.50

supercrimson 3.70 8.20 1.0 1.10 0.90 0.60

venus 4.10 7.40 1.60 2.20 0.70 0.40

argentoroma 3.60 4.40 0.90 1.10 0.40 0.50

beautylady 3.90 8.30 0.50 0.70 0.60 0.30

big top 4.50 8.60 0.90 1.30 0.50 0.40

doucer 4.40 9.80 0.70 0.80 0.40 0.10

felicia 4.60 9.30 0.50 0.50 0.20 0.20

kurakata 4.40 6.90 0.60 0.80 0.20 0.20

lucie 3.90 6.40 0.80 1.0 0.70 0.20

morsinai 4.10 5.80 1.60 1.90 0.50 0.60

oro 3.80 7.70 0.40 0.40 0.60 0.20

royal glory 4.0 6.70 0.80 0.90 0.40 0.10

sensation 4.70 4.60 2.0 3.40 0.30 0.20

sweet lady 4.20 5.50 1.30 2.10 0.50 0.40

youyeong 4.90 8.80 1.80 2.50 0.20 0.10
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